Nature of the hydrogen bridge in transition metal complexes

IV *. Comparison of the electronic structure of the phosphineand carbonyl-molybdenum dimers with double hydrogen bridge

Boguslawa Jeżowska-Trzebiatowska and Barbara Nissen-Sobociíska
Institute for Low Temperature and Structure Research, Polish Acaderny of Sciences, Plac Katedralny 1, P.O. Box 937, 50-950 Wroclaw (Poland)
(Received December 22nd, 1988)

Abstract

The influence of the terminal ligands on the electronic structure and stability of the hydrogen bond between metal atoms has been characterized on the basis of the molecular orbital calculations by use of the parameter-free Fenske-Hall and EHT methods for phosphine- and carbonyl-molybdenum dimers. The electronic structures of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ are discussed and compared with the electronic structure of $\left.\mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$. The role played by the $3 d$ AO's of the phosphorous atoms in the formation of the terminal $\left(\mathrm{PH}_{3}\right)$-Mo bonds is described.

Introduction

In our previous paper [1] we discussed the electronic structure of the carbonyl binuclear molybdenum complex with double hydrogen bridge $\left[(\mathrm{CO})_{4} \mathrm{Mo}_{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$. Molybdenum also forms the phosphine dimer with the same bridge viz. $\mathrm{H}\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{Mo}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{H}$ [2]. The molecular structure of this complex is interesting in several respects. Phosphine groups are the donors

[^0]

Fig. 1. Molecular structure of $\left.\left[(\mathrm{CO})_{4} \mathrm{Mo}_{\mathrm{H}^{-}}^{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-},\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}^{-\mathrm{H}} \mathrm{Ho}^{-} \mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ as assumed for the calculations.
i.e. they have a different character than the CO groups which are the terminal ligands in the complexes discussed earlier [1,2]. The very short Mo-Mo distance, equal to $2.19 \AA$, is well within the region of values characteristic for the quadruply bonded molybdenum atoms [2]. The asymmetry of the double hydrogen bridge Mo has been revealed by an X-ray diffraction study [2]. The important feature of this complex is that there are two terminal hydrogen atoms. Thus, we can compare the character and stability of the bridge $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ and terminal $\mathrm{Mo}-\mathrm{H}$ bonds.

(a)

(D)

Fig. 2. Symmetric and asymmetric hydrogen bridge core for phosphine dimer of molybdenum: (a) $\mathbf{M o}^{\mathbf{1}}-\mathbf{H}^{\mathrm{B}}=\mathbf{M \sigma ^ { 2 }}-\mathbf{H}^{\mathrm{B}}=1.61 \AA$, (b) $\mathrm{Ma}^{2}-\mathrm{H}_{\mathrm{B}}=1.61, \mathrm{Mo}^{2}-\mathrm{H}^{\mathrm{B}}=1.43 \AA$.

We carried out the molecular orbital calculations by means of the parameter-free Fenske-Hall and by empirical EHT methods for $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}\right.$ with symmetric Mo mo and asymmetric Mo (Fig. 1) as well as for $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ and compared our results with the electronic structure of $\left[(\mathrm{CO})_{4} \mathrm{Mo}_{\mathrm{H}^{-}}^{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$ discussed in detail previously (Fig. 2).

The coordinate systems on the atoms assumed for calculations for studied phosphine complexes are presented in Fig. 3. The structural parameters for the calculations were assumed on the basis of the crystallographic structure for $\mathrm{HPMe}_{3} \mathrm{MO}_{\mathrm{C}}^{\mathrm{H}} \mathrm{MoPMe}_{3} \mathrm{H}$ [2]. We have assumed that the $\mathrm{Mo}-\mathrm{PH}_{3}$ bonds have the same lengths for the PH_{3} groups perpendicular to the bridge plane $\left(\left(\mathrm{PH}_{3}\right)_{\mathrm{I}}\right)$ as the PH_{3} groups in the bridge plane $\left(\left(\mathrm{PH}_{3}\right)_{\text {II }}\right)$. The bond lengths used by us for the calculations were: $\mathrm{Mo}-\mathrm{Mo}=2.19, \mathrm{Mo}-\mathrm{P}_{\mathrm{I}}=\mathrm{Mo}-\mathrm{P}_{\mathrm{II}}=2.43, \mathrm{Mo}-\mathrm{H}^{\mathrm{B}}=1.61 \AA$ for the symmetric bridge and $\mathrm{Mo}^{1}-\mathrm{H}^{\mathrm{B}}=1.43, \mathrm{Mo}^{2}-\mathrm{H}^{\mathrm{B}}=1.61 \AA$ for the asymmetric bridge ($\mathrm{H}^{\mathrm{B}}=$ bridge hydrogen atom), $\mathrm{Mo}-\mathrm{H}^{\mathrm{T}}=1.82 \AA\left(\mathrm{H}^{\mathrm{T}}=\right.$ terminal hydrogen atom) and the angles were: $\mathrm{Mo}-\mathrm{H}^{\mathrm{B}}-\mathrm{Mo}=92, \mathrm{P}_{\mathrm{I}}-\mathrm{M}-\mathrm{P}_{\mathrm{I}}=180, \mathrm{P}_{\mathrm{II}}-\mathrm{M}-\mathrm{P}_{\mathrm{II}}=90$ and $\mathrm{P}_{1}-\mathrm{M}-\mathrm{H}^{\mathrm{T}}=90^{\circ}$. Suitably optimized functions of the following types: $1 s, 2 s$, $2 p, \ldots, 4 d, 5 s, 5 d$ of the Mo atoms, the $1 s, 2 s, 2 p, 3 s, 3 p$ of the P atoms, and $1 s$ of the H atoms were applied on the calculations carried out by use of the Fenske-Hall method [3]. The atomic valence base for the EHT calculations [4] contained the following functions: $4 d, 5 s, 5 p$ for the Mo atoms and $3 s, 3 p, 3 d$ for the P atoms and $1 s$ for the H atoms.

Fig. 3. Coordinate systems assumed in calculations for $\left.\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}^{\mathbf{H}} \mathrm{Mo}^{\mathrm{H}} \mathrm{PH}_{3}\right)_{4}\right]^{2+}$.

Results and discussion

The filled energy levels of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ with symmetric Mo Mo bridge, calculated by use of Fenske-Hall method, can be classed as follows:
(1) from -38.88 to -25.09 eV , levels which correspond to MO's of PH_{3} groups or the $\mathrm{PH}_{3}-4 d_{x^{2}-y^{2}}$ Mo bonding interactions,
(2) -24.85 eV energy level $\left(3 b_{3 u}\right)$ of the $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ bridge bond character,
(3) from -24.28 to -23.10 eV , levels which correspond to MO 's of PH_{3} groups or to $\mathrm{PH}_{3}-4 d_{x^{2}-y^{2}}$ interactions,
(4) -22.41 and -22.08 eV energy levels ($4 b_{3 u}$ and $6 a_{g}$ respectively) of the Mo-H-Mo bridge bond character,
(5) $-20.85,-20.73$ and -20.52 eV energy levels ($5 b_{1 u}, 3 b_{3 g}$ and $4 b_{2 g}$ respectively), which correspond to $\mathrm{PH}_{3}-4 d_{x^{2} \mathrm{P}_{y}{ }^{2}} \mathrm{Mo}, \mathrm{PH}_{3}-5 p_{y}$ Mo and $\mathrm{PH}_{3}-4 d_{x z}$ Mo bonding interactions,
(6) -19.90 and -19.46 eV levels $\left(5 b_{3 k}\right.$ and $\left.7 a_{g}\right)$ of the $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ bridge bond character,
(7) from -16.59 to -12.51 eV energy levels which correspond mainly to metalmetal interaction ($8 a_{g}, 5 b_{2 u}, 3 b_{1 g}, 3 a_{u}$),
(8) -12.24 eV nonbonding level $\left(4 b_{3 g}\right)$ exclusively of $\left(\mathrm{PH}_{3}\right)_{\mathrm{I}}$ character,
(9) - 11.91 eV HOMO level ($4 b_{1 g}$) which correspond to $\mathrm{PH}_{3}-d$ Mo interaction.

The highest of these levels are presented in Table 1 and in Fig. 4. The group of the lowest unfilled energy levels corresponds mainly to the metal-metal interactions (Table 1). Of the four filled energy levels having mainly metal AO character, only the $8 a_{g}$ and $5 b_{2 u}$ levels provide the bonding contributions to the direct metal-metal bond. The $8 a_{g}$ level corresponds to the $\sigma d-\sigma d$ bonding interaction and $5 b_{2 u}$ corresponds to the $d \pi-d \pi$ bonding interactions. But the $\delta d-\delta d$ bonding level ($3 b_{1 g}$) corresponds to the $\delta d-\delta d$ antibonding level ($3 a_{u}$). Thus these two levels do not contribute to the direct metal-metal bond (Fig. 5). Taking into account that bridge energy level $3 b_{3 u}\left(43 \% 4 d_{x z} \mathrm{Mo}\right.$) also corresponds to $\mathrm{M}-\mathrm{M}$ bonding interaction we can roughly assume that $\mathbf{M}-\mathbf{M}$ bond order is only slightly greater than two (in spite of the short distance between metal atoms, suggesting quadruply bonded metal atoms [2]). The occurence of a large direct bonding interaction between the metal atoms in $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Me}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ also appears in the M-M overlap population of 0.200 (Table 2). It is noteworthy that in the carbonyl dimer $\left[(\mathrm{CO})_{4} \mathrm{M}_{-}^{-}{ }^{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$ the bonding interaction between the metal atoms is exclusively through the double hydrogen bridge, which results in the M-M overlap population that is close to zero [2].

Last two filled energy levels in $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{-}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}\left(4 b_{3 g}, 4 b_{1 g}\right)$ have mainly the character of phosphine groups which are perpendicular to bridge plane
Table 1
Energies and compositions of the highest occupied molecular energy levels of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{-}^{-} \mathrm{H}_{4} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ with symmetric double hydrogen bridge and $D_{2 h}$
symmetry calculated by use of the Fenske-Hall method

MO	Energy (eV)	Greatest	tio	lence atomic					
$5 b_{28}$	-5.22	$4 d_{x i} \mathrm{Mo}$	57	$5 d_{x z} \mathrm{Mo}$	15	$s \mathrm{H}_{1}$	12	$p_{y} \mathrm{P}_{\text {II }}$	9
$5 b_{38}$	-8.20	$4 d_{\text {yz }} \mathrm{Mo}$	88	$5 d_{y z} \mathrm{Mo}$	3	$p_{2} \mathrm{P}$	3	$s \mathrm{H}_{\text {I }}$	2
$6 b_{14}$ LUMO	-11.28	$4 d_{2}{ }^{2} \mathrm{Mo}$	39	$4 d^{2}{ }^{2}-y^{2} \mathrm{Mo}$	25	p_{z} Mo	13	$s \mathrm{H}_{t}$	12
$4 b_{18}{ }^{\text {HOMO }}$	-11.91	sH_{I}	44	$4 d_{x y}$ Mo	17	$p_{y} \mathrm{P}_{1}$	13	$4 d_{z^{2}} \mathrm{Mo}$	10
$4 b_{38}$	-12.24	$\mathrm{sH}_{\text {t }}$	64	$P_{y} \mathrm{P}_{1}$	16	${ }_{\boldsymbol{s}} \mathrm{P}_{1}$	8	$p_{x} \mathrm{P}_{1}$	6
$3 a_{u}$	-12.51	$4 d_{x y}$ Mo	94	$s \mathrm{H}_{1}$	3				
$3 b_{18}$	-14.16	$4 d_{x y} \mathrm{Mo}$	77	$s \mathrm{H}_{\mathrm{I}}$	12	$p_{x} \mathrm{P}_{\mathbf{I}}$	4	$p_{y} \mathrm{P}_{\mathrm{I}}$	2
$5 b_{24}$	-15.83	$4 d_{y z} \mathrm{Mo}$	96	$s \mathrm{H}_{1}$	1				
$8 a_{8}$	-16.59	$4 d_{2_{2}{ }^{\text {2 }} \text { Mo }}$	72	4d $\mathrm{x}^{2}-y^{2} \mathrm{Mo}$	15	$s \mathrm{H}^{\mathrm{B}}$	5	$p_{z} \mathrm{P}_{\mathrm{HI}}$	2
$7 a_{8}$	-19.48	$s \mathrm{H}^{\mathrm{B}}$	25	$p_{z} \mathrm{P}_{\text {II }}$	19	$\boldsymbol{P}_{\mathbf{y}} \mathrm{P}_{\mathrm{HI}}$	16	$p_{2} \mathrm{Mo}$	13
$5 b_{34}$	-19.90	$p_{y} \mathrm{P}_{\mathrm{II}}$	30	$p_{z} \mathrm{P}_{\mathrm{II}}$	29	$s \mathrm{H}^{\text {B }}$	14	${ }_{s} \mathrm{PII}$	12
$4 b_{2 g}$	-20.52	$p_{\text {P }} \mathrm{P}_{\text {II }}$	43	$p_{\text {s }} \mathrm{P}_{\text {III }}$	22	$\boldsymbol{s} \mathrm{H}_{\text {II }}$	12	4d $d_{\text {x }} \mathrm{Mo}$	10
$3 b_{38}$	-20.73	$p_{1} \mathrm{P}_{1}$	60	$p_{y} \mathrm{Mo}$	18	${ }_{s P_{1}}$	11	sH_{I}	8
$5 b_{14}$	-20.85	$p_{y} \mathrm{P}_{\mathrm{II}}$	32	$p_{\text {I }} \mathrm{P}_{\text {II }}$	25	$4 d_{x^{2}-y^{2}} \mathrm{Mo}$	15	$s \mathrm{P}_{\text {II }}$	10
$6 a_{8}$	-22.08	$s H^{\text {B }}$	40	$p_{\text {y }} \mathrm{P}_{\text {III }}$	24	$s \mathrm{H}_{\mathrm{HI}}$	11	$4 d_{x^{2}-y^{2}} \mathrm{Mo}$	9
$4 b_{34}$	-22.41	${ }_{s} \mathrm{HII}^{\text {I }}$	38	$p_{\text {y }} \mathrm{P}_{\text {III }}$	28	$s \mathrm{H}^{\mathbf{B}}$	14	$p_{2} \mathrm{P}_{\text {II }}$	11
$3 b_{2 g}$	-23.10	${ }^{\text {H }}$ II	36	$p_{\text {s }} \mathrm{P}_{\text {II }}$	32	$p_{P} \mathrm{P}_{\mathrm{II}}$	16	$s P_{\text {II }}$	5
$4 b_{14}$	-23.18	$p_{\text {r }} \mathrm{P}_{1}$	42	$4 d^{2}-y^{2} \mathrm{Mo}$	11	${ }_{\boldsymbol{s}} \mathrm{HII}^{\text {I }}$	11	$p_{s} \mathrm{P}_{\mathrm{II}}$	10
$3 b_{1 u}$	-23.59	$p_{\text {r }} \mathrm{P}_{\mathrm{II}}$	32	$s \mathrm{H}_{\text {II }}$	31	$p_{y}{ }^{\text {P }}$ III	18	$p_{r} \mathrm{P}_{\mathrm{II}}$	7
$5 a_{8}$	-23.79	$p_{\text {P }} \mathrm{P}_{\mathrm{II}}$	31	$s \mathrm{H}_{\mathrm{II}}$	31	$p_{y} \mathrm{P}_{\text {II }}$	19	$s \mathrm{H}^{\text {B }}$	5
$4 b_{24}$	-24.28	$p_{s} \mathrm{P}_{1}$	54	$s \mathrm{H}_{1}$	16	$s \mathrm{P}_{1}$	11	$p_{x}{ }^{\text {P }}$	11
$3 b_{3 u}$	-24.85	$4 d_{x x}$ Mo	43	$s \mathrm{H}^{\text {B }}$	38	$p_{t} \mathrm{P}_{\text {II }}$	15	$s \mathrm{H}_{\text {II }}$	7
$2 a_{u}$	-25.09	$p_{x} \mathrm{P}_{1}$	44	$\mathbf{s H}_{1}$	47	$p_{z} \mathrm{P}_{1}$	4	$p_{y} \mathrm{P}_{1}$	1

$\mathbf{H}^{\mathrm{B}}=$ bridge hydrogen atom, $\mathrm{H}_{\mathrm{I}}=$ hydrogen atom of the PH_{3} group perpendicular to bridge plane, $\mathrm{H}_{11}=$ hydrogen atom of PH_{3} group in bridge plane, $\mathrm{P}_{\mathrm{I}}=$ phosphorous atom perpendicular to the bridge plane, $\mathrm{P}_{\mathrm{II}}=$ phosphorous atom in the bridge plane.

Fig. 4. Correlation of the molecular energy levels of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ calculated by use of Fenske-Hall method.
$\left(\left(\mathrm{PH}_{3}\right)_{\mathrm{I}}\right)$. The replacement of the two $\left(\mathrm{PH}_{3}\right)_{\mathrm{I}}$ groups with H^{-}anions after transition to $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}$ Mo- \mathbf{H}^{T} interaction levels, which are in an energy region between the $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$

Fig. 5. Filled molecular energy levels corresponding mainly to metal-metal interactions.

Table 2a. Mulliken overlap populations

Compound	Overlap populations				
	\mathbf{M} - M	$\mathbf{M}-\mathbf{H}^{\mathbf{B}}$	$\mathbf{M}-\mathrm{L}_{\mathbf{I}}$	$\mathbf{M}-\mathrm{L}_{\text {II }}$	$\mathrm{M}-\mathrm{H}$
Calculated by Fenske-Hall method	0.222	0.157	0.239	0.156	
	-0.008	0.118	0.400	0.381	
 (b) $[1]$	0.023	0.147	0.418	0.395	
Calculated by EHT method ${ }^{b}$	0.301	0.324	0.694	0.616	
	0.363	0.330	0.751	0.781	0.404
	0.066	0.301	0.839	0.839	

$\mathrm{L}_{\mathrm{I}}=$ terminal ligand in perpendicular plane to hydrogen bridge, $\mathrm{L}_{\mathrm{II}}=$ terminal ligand in hydrogen bridge plane, $H^{B}=$ bridge hydrogen atom, $H^{T}=$ terminal hydrogen atom, $s=$ symmetric hydrogen bridge, $\mathrm{a}=$ calculated with inclusion of $5 d$ AO's of Mo, $\mathrm{b}=$ calculated without inclusion of 5 AO's of Mo.
${ }^{a}$ Without inclusion of $3 d$ AO's of P. ${ }^{b}$ With inclusion of $3 d$ AO's of P.
Table 2b. Mulliken atomic charges

Compound	Atomic charges				
	M	$\mathbf{H}^{\text {B }}$	\mathbf{L}_{1}	$\mathbf{L}_{\text {II }}$	$H^{\text {T }}$
Calculated by Fenske-Hall method ${ }^{\text {a }}$	0.374	-0.431	0.304	0.230	
	1.243	-0.488	-0.405	-0.474	
	0.746	-0.331	-0.316	-0.391	
Calculated by EHT method ${ }^{\text {b }}$	1.554	-0.223	-0.123	-0.037	
	1.216	-0.243	-0.176	-0.033	-0.286
	1.319	-0.330	-0.609	-0.604	

[^1]Table 3
Atomic charges and overlap populations for $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}\right.$
asymmetric bridge calculated by use Fenske-Hall method

Bridge core	M	$\mathrm{H}^{\mathbf{B}}$	$\left(\mathrm{PH}_{3}\right)_{\text {I }}$	$\left(\mathrm{PH}_{3}\right)_{\text {II }}$
	0.374	-0.431	0.304	0.230
	0.421	-0.423	0.297	$\begin{aligned} & 0.233^{a} \\ & 0.190^{b} \end{aligned}$
	\mathbf{M} - M	$\mathrm{M}-\mathrm{H}_{\mathrm{B}}$	$\mathbf{M}-\mathbf{P}_{\mathbf{I}}$	$\mathbf{M - P}$
	0.222	0.157	0.239	0.156
	0.193	$\begin{aligned} & 0.063^{a} \\ & 0.256^{b} \end{aligned}$	0.237	$\begin{aligned} & 0.154^{a} \\ & 0.149^{b} \end{aligned}$

[^2]and Mo-Mo levels (Fig. 4). As a result of this energy level exchange, the energy level showing M-M interaction becomes the HOMO level. The difference between HOMO and LUMO energy levels increases significantly on going from $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ to $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ indicating that the stability of the latter complex is higher.
$\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Me}_{\mathrm{H}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ is the model system for $\mathrm{H}\left(\mathrm{PMe}_{3}\right)_{3}-$ $\mathrm{Me}_{2}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{H}$ in which asymmetry of the double hydrogen bridge exists. This consideration was included in our calculations but we cannot say which double hydrogen bridge, the symmetric, $\mathrm{Me}_{\mathrm{H}^{-}}^{\mathrm{H}} \mathrm{Mo}$, or asymmetric, $\mathrm{Me}_{2}^{-\mathrm{H}}$ the more stable because the energy difference between appropriate levels for both complexes are well within the error margin of the calculations (0.01 eV). As one can see from Table 3 the transition from $\mathrm{MQ}_{\mathrm{H}^{-}}^{\mathrm{H}}$ Mo to Mo^{-}Mo has no significant influence on the charge localized on the bridge hydrogen atoms.
Some similarity between the electronic charge distribution for the bridge core

Table 4
Energies and compositions of the highest occupied molecular energy levels of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}\right.$
symmetry calculated by use of the EHT method

MO	Energy	Greatest con	ns by	atomic or					
$5 b_{28}$	-9.72	$3 d \mathrm{P}_{11}$	38	$4 d_{x z} \mathrm{Mo}$	29	$\mathrm{sH}_{\mathrm{II}}$	12	$\mathrm{pP}_{\mathrm{II}}$	8
$9 a_{8}$	-9.99	${ }^{3} d \mathrm{P}_{1}$	32	$s^{\text {H }}$ I	10	$3 d^{\text {P }}$	8	$4 d_{x^{2}-y^{2}} \mathrm{Mo}$	8
$6 b_{1{ }_{1 /}}$ LUMO	-11.14	$3 d \mathrm{P}_{\text {II }}$	39	$\mathrm{sH}_{\mathrm{II}}$	24	$4 d_{z^{2}} \mathrm{Mo}$	24	$4 d_{x^{2}-y^{2}}$ Mo	6
$3 a_{4} \mathrm{HOMO}$	-11.38	$4 d_{x y} \mathrm{Mo}$	31	4d ${ }_{2}{ }^{\text {2 }}$ Mo	24	$3 d \mathrm{P}_{\mathrm{II}}$	26	$3 d \mathrm{P}_{\mathrm{I}}$	10
$4 b_{1 g}$	-11.73	$3{ }^{\text {d }} \mathrm{P}_{1}$	32	$s \mathrm{H}_{1}$	22	$4 d_{x y}$ Mo	21	$\boldsymbol{s H}_{\mathrm{II}}$	6
$8 a_{8}$	-11.83	$4 d_{2}{ }^{\text {Mo }}$	27	$3 d \mathrm{P}_{\text {II }}$	26	$s \mathrm{H}_{\mathrm{H}}$	16	$3 d \mathrm{P}_{\mathrm{I}}$	8
$4 b_{38}$	-12.18	$3{ }^{1} \mathrm{P}_{1}$	44	${ }_{s} \mathrm{H}_{1}$	34	$p \mathrm{P}_{1}$	13	$s \mathrm{P}_{1}$	3
$5 b_{2 m}$	-12.37	$4 d_{\text {y }} \mathrm{Mo}$	50	$3 d \mathrm{P}_{1}$	20	$3 \mathrm{dP}_{\mathrm{II}}$	12	$s \mathrm{H}_{1}$	8
$3 b_{18}$	-12.58	$3 \mathrm{dP}_{1}$	32	$4 d_{x y}$ Mo	24	${ }_{s} \mathrm{H}_{1}$	21	${ }_{s} \mathrm{P}_{1}$	6
$5 b_{1 u}$	-13.92	4d $x^{2}-y^{2} \mathrm{Mo}$	31	${ }_{p} \mathrm{P}_{1}$	26	${ }^{\text {P }} \mathrm{PII}$	19	$4 d_{2}{ }^{\text {Mo }}$	7
$7 a_{8}$	-13.97	$s \mathrm{H}^{\text {B }}$	36	$p \mathrm{P}_{\text {II }}$	23	$p_{2} \mathrm{Mo}$	15	$4 d_{x^{2}} \mathrm{Mo}$	5
$3 b_{3 g}$	-14.45	${ }_{p} \mathrm{P}_{\mathrm{I}}$	45	$p_{y} \mathrm{Mo}$	12	${ }_{s} \mathrm{H}_{1}$	6	$s \mathrm{H}_{\text {II }}$	5
$5 b_{34}$	-14.76	$p \mathrm{P}_{\text {II }}$	35	${ }_{4} d_{x I}$ Mo	27	$s \mathrm{H}_{\mathrm{B}}$	20	$\mathrm{sH}_{\mathrm{II}}$	10
$4 b_{28}$	-15.02	${ }_{p} \mathrm{P}_{\text {II }}$	57	$s \mathrm{H}_{1}$	10	$s \mathrm{H}_{\mathrm{II}}$	8	$p_{x} \mathrm{Mo}$	5
$3 b_{28}$	-15.11	$p \mathrm{P}_{\text {II }}$	34	$s \mathrm{H}_{\mathrm{II}}$	25	${ }_{P} \mathrm{P}_{\mathbf{1}}$	9	${ }^{4} d_{x_{2}} \mathrm{Mo}$	1
$6 a_{8}$	- 15.45	$4 d^{2}-y^{2} \mathrm{Mo}$	23	${ }^{\text {P }} \mathrm{P}_{\text {II }}$	17	$p \mathrm{P}_{1}$	15	$\boldsymbol{s} \mathrm{H}_{\mathrm{B}}$	12
$4 b_{3 *}$	-15.54	${ }_{P} \mathrm{PII}^{\text {I }}$	34	${ }^{\text {s }} \mathrm{H}_{11}$	20	$s \mathrm{H}_{\mathrm{B}}$	17	$4 d_{x z} \mathrm{Mo}$	19
$3 b_{3 *}$	-15.69	${ }_{P} \mathrm{P}_{\text {II }}$	43	$s \mathrm{H}^{\mathrm{B}}$	18	p_{x} Mo	13	$s \mathrm{H}_{11}$	8
$4 b_{14}$	-15.78	$p \mathrm{P}_{\text {II }}$	61	sH_{H}	15	$p \mathrm{P}_{\mathrm{I}}$	9	4 $d_{2^{2}} \mathrm{Mo}$	5
$2 a_{*}$	-15.80	$s \mathrm{P}_{\mathrm{I}}$	29	$s \mathrm{H}_{\mathrm{I}}$	30	$p^{\text {P }}$ II	15	$4 d^{2}-y^{2} \mathrm{Mo}$	6
$2 b_{2 g}$	-16.14	${ }_{p} \mathrm{P}_{\mathrm{I}}$	30	${ }_{p} \mathrm{P}_{\text {II }}$	26	$p_{x} \mathrm{Mo}$	8	$4 d_{x z}$ Mo	7
$3 b_{14}$	-16.52	${ }_{p} \mathrm{P}_{\text {II }}$	45	$\boldsymbol{s} \mathrm{H}_{\text {II }}$	17	$p \mathrm{P}_{1}$	10	$s \mathrm{H}_{1}$	10
$4 b_{2 u}$	-16.77	${ }_{p} \mathrm{P}_{\text {I }}$	37	${ }^{\text {P }} \mathrm{PII}$	12	$\boldsymbol{s H}_{\mathrm{H}}$	12	$p_{y} \mathrm{Mo}$	5

Table 5
Energies and compositions of the highest occupied molecular energy levels of $\left.\mathrm{H}_{(} \mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{0}^{\prime} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ with symmetric double hydrogen bridge and $C_{2 h}$ symmetry by use of the EHT method

MO	Energy	Greatest con	s by	atomic orbi					
$7 b_{8}$	-9.74	$3 d \mathbf{P}_{\text {II }}$	38	$4 d^{\text {x }}$ Mo	28	${ }_{p} \mathrm{P}_{\mathrm{II}}$	8	$s \mathrm{H}_{11}$	6
$11 a_{g}$	-10.20	$3 d \mathrm{P}_{11}$	26	$4 d_{y_{z}} \mathrm{Mo}$	24	$3 d \mathrm{P}_{\mathrm{I}}$	10	$s \mathrm{H}^{\text {T }}$	9
$10 b_{u}$ LUMO	-11.08	$3 d \mathrm{P}_{\mathrm{II}}$	37	$4 d_{\Sigma^{2}} \mathrm{Mo}$	24	$s \mathrm{H}_{\mathrm{H}}$	17	$4 d_{x y} \mathrm{Mo}$	8
$7 a_{4}$ HOMO	-11.27	$4 d_{x y} \mathrm{Mo}$	39	$4 d^{2}{ }^{2} \mathrm{Mo}$	17	$3 d^{\text {III }}$	17	$3 d^{\text {P }}$ I	11
$10 a_{g}$	-11.78	$4 d_{2}{ }^{2} \mathrm{Mo}$	35	$3 d \mathrm{P}_{\text {II }}$	20	$s \mathrm{H}_{\mathrm{II}}$	20	$4 d_{x y}$ Mo	9
$6 b_{g}$	-11.90	$4 d_{x y}$ Mo	50	$3{ }^{\text {d }} \mathrm{PII}$	16	$3 d \mathrm{P}_{1}$	14	$s \mathrm{H}_{\mathrm{II}}$	8
$9 b_{4}$	-12.19	$4 d^{\text {y }}$ Mo	61	$3 d \mathrm{P}_{1}$	11	3d P_{II}	13	$s \mathrm{H}_{11}$	5
$9 a_{g}$	-13.59	$s \mathrm{H}^{\mathbf{T}}$	39	$p_{y} \mathrm{Mo}$	12	$3 d \mathrm{P}_{1}$	11	$s \mathrm{H}_{\mathrm{I}}$	10
$8 b_{u}$	-13.75	$s \mathrm{H}^{T}$	38	$4 d_{x^{2}-y^{2}} \mathrm{Mo}$	26	$4 d_{2}{ }^{2} \mathrm{Mo}$	7	${ }^{2} \mathrm{P}_{\mathrm{II}}$	7
$8 a_{g}$	-14.01	$s \mathrm{H}^{\text {B }}$	33	$p \mathrm{P}_{\text {II }}$	30	$p_{2} \mathrm{M} 0$	16	$s \mathrm{H}^{\text {T }}$	4
$6 a_{u}$	-14.74	${ }_{p} \mathrm{P}_{11}$	28	$4 d_{x z} \mathrm{Mo}$	28	$s \mathrm{H}^{\text {B }}$	20	$s \mathrm{H}_{\text {II }}$	11
$5 b_{8}$	-15.08	${ }_{p} \mathrm{P}_{11}$	57	$\boldsymbol{s H}_{\text {II }}$	18	$p_{x} \mathrm{Mo}^{\text {c }}$	3	${ }_{p} \mathrm{P}_{\mathrm{I}}$	4
$7 b_{u}$	-15.20	${ }^{\text {P }} \mathrm{P}_{11}$	46	${ }_{p} \mathrm{P}_{\mathrm{I}}$	12	$s \mathrm{H}^{\text {T }}$	10	$s \mathrm{H}_{\text {II }}$	7
$7 a_{g}$	-15.22	4d $\mathrm{x}^{2}-y^{2} \mathrm{Mo}$	27	${ }_{p} \mathrm{P}_{1}$	25	$p \mathrm{P}_{\text {II }}$	15	$s \mathrm{H}^{\mathrm{B}}$	9
$5 a_{u}$	-15.53	${ }^{\text {P }} \mathrm{P}_{11}$	34	$s \mathrm{H}_{\text {II }}$	21	$4 d_{x z} \mathrm{Mo}$	19	$s \mathrm{H}^{\text {B }}$	17
$4 b_{8}$	-15.61	$p \mathrm{P}_{\text {II }}$	47	$s \mathrm{H}_{\text {II }}$	20	$4 d_{x_{2}} \mathrm{Mo}$	10	$p_{x} \mathrm{Mo}$	7
$4 a_{u}$	-15.63	${ }_{p} \mathrm{P}_{\text {II }}$	33	$s \mathrm{H}^{\text {B }}$	18	p_{x} Mo	14	$\mathrm{sH}_{\mathbf{1}}$	7
$6 b_{u}$	-15.92	$p \mathrm{P}_{\mathrm{II}}$	40	$p \mathrm{P}_{\mathrm{I}}$	23	$s \mathrm{H}_{\text {II }}$	14	$s \mathrm{H}^{\text {T }}$	4
$6 a_{8}$	-16.28	${ }_{p} \mathrm{P}_{\text {II }}$	50	$\mathrm{sH}_{\mathrm{HI}}$	18	$s \mathrm{H}^{\mathrm{B}}$	9	$p_{z} \mathrm{Mo}$	2
$3 b_{g}$	-17.04	$p \mathrm{P}_{1}$	39	$\mathrm{sH}_{\mathrm{HI}}$	33	$s \mathrm{H}^{\text {T }}$	11	${ }^{p} \mathrm{P}_{11}$	9
$3 a_{u}$	- 17.10	${ }_{p} \mathrm{P}_{\mathrm{I}}$	37	$s \mathrm{H}_{1}$	21	$s \mathrm{H}_{\mathrm{HI}}$	7	$s \mathrm{H}^{\text {B }}$	2
$5 b_{\text {u }}$	-17.13	${ }_{p} \mathrm{P}_{\mathrm{I}}$	34	$p \mathrm{P}_{\text {II }}$	20	$s \mathrm{H}_{\mathrm{I}}$	21	$s^{\text {H }}$ II	7

 the metal atoms, and terminal ligands in the complexes can be seen in Table 2. The negative charge on bridging hydrogen atom $\left(\mathrm{H}^{\mathrm{B}}\right)$ and $\mathrm{Mo}-\mathrm{H}^{\mathrm{B}}$ overlap population in $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathbf{H}^{-}}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ are very close to the relevant values in $\left[(\mathrm{CO})_{4} \mathrm{MO}_{-}^{-\mathrm{H}^{-}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$. By contrast, the positive charge on the molybdenum atom is significantly lower in the carbonyl dimer than in the phosphine dimer because of the differing terminal ligands in the molybdenum dimers. The carbonyl groups accept electronic density from the $4 d \mathrm{AO}$'s of Mo as reflected in their negative charges, and the phosphine groups donate electronic density to $4 d$ AO's of Mo, hence their positive charge.

In order elucidate the role of the phosphorous $3 d$ AO's in maintaining the $\mathrm{Mo}-\mathrm{PH}_{3}$ bond we calculated by EHT the electronic structures of $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}^{-}{ }_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}^{-\mathrm{H}} \mathrm{H}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ taking into account these AO's (Tables 4, 5). The electronic charge distributions for $\left[\left(\mathrm{PH}_{3}\right)_{4}\right.$ $\left.\mathrm{Mo}_{\mathrm{H}^{-}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\left[(\mathrm{CO})_{4} \mathrm{Mo}_{\mathrm{H}}^{-\mathrm{H}^{-}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$ were found to become more similar (Table 6). The positive charge on molybdenum atoms is 1.554 in the phosphine dimer and 1.319 in the carbonyl dimer. The PH_{3} groups have the negative charges, as do the CO groups. Thus the PH_{3} groups show some acceptor character, which is reflected in the significant participation of $3 d$ AO's of the \mathbf{P} atoms in maintaining the terminal Mo- $\mathbf{P H}_{3}$ bonds. The energy level diagrams for $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ calculated by use of the two methods are similar (Fig. 4 and Fig. 6). The AOs of the bridging hydrogen atoms are delocalized and make up five occupied molecular levels. The nonbonding PH_{3}, and bonding Mo- PH_{3} levels which are made up exclusively of the $3 p$ AO's of P , lie in the same energy range as the bridge levels. The differences lie in the composition of the highest occupied levels, which have Mo $4 d$ AO characters to about 90%, if we disregard the $3 d \mathrm{AO}$'s of P in the calculations. If the $3 d \mathrm{P}$ AOs are taken into consideration these levels then correspond to the interactions of the filled 4d AO's of Mo atoms with unfilled orbitals of terminal ligands ($4 d \mathrm{Mo} \rightarrow 3 d \mathrm{P}$) and therefore have the same character as the highest occupied energy levels in $\left[(\mathrm{CO})_{4} \mathrm{MO}_{\mathrm{H}^{-}}^{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}\left(4 d \mathrm{Mo} \rightarrow \pi^{\mathrm{a}} \mathrm{CO}\right)$. It is of interest to note how the electronic charge distribution changes after replacement of the two $\left(\mathrm{PH}_{3}\right)_{1}$ groups with two H^{-}anions. We have stated that the negative charge on the bridging hydrogen atoms and the $\mathbf{M o}-\mathbf{H}^{\mathrm{B}}$ overlap population changes slightly after on going from $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ to $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}}^{-\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ (Table 6).

Fig. 6. Correlation of the molecular energy levels of $\left.\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}} \mathrm{Ho}^{\mathrm{H}} \mathrm{PH}_{3}\right)_{4}\right]^{2+}$ and $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ calculated by use of the EHT method.

However, the changes of the charge on metal atoms and PH_{3} groups are larger. The positive charge on the metal atoms decreases from 1.554 to 1.216 and the negative charge on the PH_{3} groups increases from -0.123 to -0.176 for $\left(\mathrm{PH}_{3}\right)_{\mathrm{I}}$ and increase from -0.037 to -0.333 for $\left(\mathrm{PH}_{3}\right)_{\text {II }}$. Thus the electronic density was partially shifted from the terminal H^{-}anions via the $4 d$ metal atom AO's onto the $3 d$ AO's of the \mathbf{P} atoms. The Mo- PH_{3} overlap population is also slightly increased. These two facts indicate that the $\mathbf{M o}-\mathrm{PH}_{3}$ bonds are stronger in $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ than in $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathbf{H}}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$. A char-
a)

$$
\left[(\mathrm{CO})_{4} \mathrm{MO}_{\mathrm{H}}^{\mathrm{H}} \mathrm{Mo}_{0}(\mathrm{CO})_{4}\right]^{-2} \quad\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{H}_{\mathrm{O}}^{\mathrm{H}} \mathrm{HO}_{0}\left(\mathrm{PH}_{3}\right)_{4}\right]^{+2}
$$

b)

$$
\left[(\mathrm{CO})_{4} \mathrm{HO}_{\mathrm{H}}^{\mathrm{H}} \mathrm{MO}_{0}(\mathrm{CO})_{4}\right]^{-2} \quad\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{M}_{0} \mathrm{H}_{\mathrm{H}}^{\mathrm{H}} \mathrm{H}_{0}\left(\mathrm{PH}_{3}\right)_{4}\right]^{+2}
$$

Fig. 7. Comparison of the electronic structure of the carbonyl and phosphine dimers of Mo with double hydrogen bridge: a) on the basis of the calculations by use of the Fenske-Hall method b) on the basis of the calculations by use of the EHT method.
acteristic feature of the Mo-H-Mo bridge bond in all complexes of molybdenum studied by us up to now is its partial ionic character.

The terminal Mo-H bond has the same character as the Mo-H-Mo bridge bond in $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}^{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ because of the negative charge on the terminal hydrogen atom. This negative charge is -0.286 compared with -0.246 for the bridge hydrogen atom. The covalencies of the $\mathrm{Mo}-\mathrm{H}$ and $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ bonds are also similar, because the Mo-H overlap population for terminal hydrogen atoms (0.404) is only slightly higher than the Mo-H overlap population for the bridge hydrogen atoms (0.363).

However, the energy levels corresponding to the terminal Mo-H bonds are higher than all the levels corresponding to the Mo-H-Mo bonds and thus the terminal hydrogen bonds are less stable than the bridge hydrogen bonds in this molecule (Fig. 4 and Fig. 6).

In Fig. 7 is depicted the comparison of the energy levels of $\left[(\mathrm{CO})_{4} \mathrm{MO}_{\mathrm{H}} \mathrm{Mo}(\mathrm{CO})_{4}\right]^{2-}$ and $\left[\left(\mathrm{PH}_{3}\right)_{4} \mathrm{Mo}_{\mathrm{H}} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{4}\right]^{2+}$ which were
calculated by use of the Fenske-Hall and EHT methods. As mentioned in a previous paper, the stability of the double hydrogen bridge is higher in the phosphine dimer of Mo than in its carbonyl dimer [2]. It is noteworthy that the stabilities of the double hydrogen bridges in the phosphine dimer of Mo and in $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Al}^{-\mathrm{H}} \mathrm{Al}_{\left(\mathrm{CH}_{3}\right)_{4}}$ are similar. On the other hand the stability of the double hydrogen bridge in carbonyl dimers of the transition metals is similar to that
in

Conclusions

We have found that the $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ bridge bond in the phosphine binuclear complex of molybdenum, like that in the carbonyl dimer of molybdenum, is partly ionic and partly covalent. The Mulliken negative charge on bridging hydrogen atom is in a range of values characteristic for other complexes of molybdenum which we have studied previously [1,5,6]. The highest filled energy levels in this complex correspond to the interactions of the filled $4 d$ AO's of the metal atoms with the unfilled 3d AO's of the phosphine atoms, so in this respect the electronic structure of the phosphine dimer also reflects the electronic structure of the carbonyl dimer too. On the other hand the stability of the double hydrogen bridge and the delocalization of the molecular orbitals corresponding to the $\mathrm{M}-\mathrm{H}-\mathrm{M}$ bonds are much higher in the phosphine complex. The effective bonding interaction between metal atoms corresponds to a direct $\mathbf{M}-\mathbf{M}$ bond of order slightly higher than two. We have also mentioned that in the $\mathrm{H}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{Mo}^{-} \mathrm{Mo}\left(\mathrm{PH}_{3}\right)_{3} \mathrm{H}$ the terminal hydrogen ligands have a similar negative charge to that of the bridge hydrogen ligands, so that the $\mathrm{Mo}-\mathrm{H}$ and the $\mathrm{Mo}-\mathrm{H}-\mathrm{Mo}$ bonds have partial ionic character. But the stability of the Mo-H-Mo bridge bonds is higher than that of the terminal Mo-H bonds.

Acknowledgement

This work was supported financially by Project No. CPBP 01.12 of Polish Academy of Sciences.

References

1 B. Jeえowska-Trzebiatowska and B. Nissen-Sobocifiska, J. Organomet. Chem., 342 (1988) 215.
2 R.A. Jones, K.W. Chiu, G. Wilkinson, A.M.R. Galas, M.B. Hursthay, J.Chem. Soc. Chem. Comm., (1980) 408.

3 M.B. Hall and R.F. Fenske, Inorg. Chem., 11 (1972) 768.
4 R. Hoffmann, J. Chem. Phys., 39 (1963) 1397.
5 B. Jeł̌owska-Trzebiatowska and B. Nissen-Sobocinska, J. Organomet. Chem., 322 (1987) 331.
6 B. Jeł̀owska-Trzebiatowska and B. Nissen-Sobocińska, J. Organomet. Chem., 342 (1988) 353.

[^0]: * Fur part III, see ref. 6.

[^1]: aithout inclusion of $3 d$ AO's of P. ${ }^{b}$ With inclusion of $3 d$ AO's of P.

[^2]: ${ }^{a}$ Position cis to shorter Mo- H_{B} bond. ${ }^{b}$ Position trans to shorter Mo- H^{B} bond.

